
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Basic Compose GUI

◦ Composable functions

◦ setContent

◦ Text

◦ TextField

◦ it keyword

◦ Button

◦ Column

◦ Row

◦ Modifier

◦ Surface

© 2024 Arthur Hoskey. All
rights reserved.

Composable Function

Composable Function

 Composable functions emit UI elements.

 Used to define the app's UI.

 A Composable function must be decorated with the @Composable
annotation.

 For example:

@Composable

fun MainScreen(modifier: Modifier) {

 Column(modifier) {

 Text(text = "Hello")

 Text(text = "Android")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Composable annotation

Both Column and Text are

composable functions. They

make up the UI elements of

MainScreen.

Create Composables in a Loop

Create Composables in a Loop

 You can use a loop to generate multiple UI elements.

@Composable

fun MainScreen(modifier: Modifier) {

 Column(modifier) {

 for (i in 1..5) {

 Text(text = i.toString())

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Creates Text elements in a loop. The

Column will create five Text elements

inside of it. Each Text will display a

different value of i from 1 to 5.

Calling Composable Functions

Calling Composable Functions

 Composable functions CANNOT be called from normal Kotlin functions.

 In the code below, MainScreen cannot be called from inside of MainActivity.onCreate
(normal Kotlin function).

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?)

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 MainScreen(Modifier)

 }

} // end - MainActivity

@Composable

fun MainScreen(modifier: Modifier) {

 Column(modifier) {

 Text(text = "Hello")

 Text(text = "Android")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

MainScreen is a composable function

because it is decorated with

@Composable. It CANNOT be called from

a normal Kotlin function.

Cannot call a composable function from a

normal Kotlin function (onCreate is normal

Kotlin function)

onCreate is a normal

Kotlin function

setContent Block

setContent Block

 Defines an activity's layout where composable functions are called.

 Bridges the gap between normal functions and composable functions.

 Composable functions can be called by setContent (composable functions
emit UI).

◦ setContent itself is not a composable function.

 Here is setContent in MainActivity:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?)

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 // Add GUI elements here…

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Composable functions can be called

from inside of setContent

Call Composable Function from setContent
(Scaffold and enableEdgeToEdge)

Call Composable Function from setConent (Scaffold and enableEdgeToEdge)

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 HelloWorldTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 MainScreen(Modifier.padding(innerPadding))

 }

 }

 }

 }

}

@Composable

fun MainScreen(modifier: Modifier) {

 Column(modifier) {

 Text(text = "Hello")

 Text(text = "Android")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

MainScreen is called from inside of MainActivity's

setContent block.

Note: enableEdgetoEdge is being used with a

Scaffold so padding must be set on MainScreen.

This will ensure that the existing content at the top

of the screen (time, battery icon etc…) does not

obscure parts of the UI generated by MainScreen.

Column uses modifier parameter

(this will add padding)

Call Composable Function from setContent
(No Scaffold or enableEdgeToEdge)

Call Composable Function from setConent (No Scaffold or
enableEdgeToEdge)

 For example:
class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?)

 super.onCreate(savedInstanceState)

 setContent {

 MainScreen(Modifier)

 }

 }

}

@Composable

fun MainScreen(modifier: Modifier) {

 Column(modifier) {

 Text(text = "Hello")

 Text(text = "Android")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

MainScreen is called inside of

MainActivity's setContent block (it will be

the Ui for MainActivity)

Text

Text

 A composable function.

 Shows text in the GUI.

 Must be called from a composable function or from
inside a setContent block.

 For example:

Text(text="Hello")

© 2024 Arthur Hoskey. All
rights reserved.

Emits the string "Hello" in the UI

Text That Uses a Variable Source

Text That Uses a Variable Source

 Put data from a variable in a Text.

 For example:

var x by rememberSaveable { mutableStateOf("abc") }

Text(text="$x")

© 2024 Arthur Hoskey. All
rights reserved.

Use $ prefix for a variable name.

$x will be replaced with whatever value

is in the x variable.

Declare variable x. Using rememberSaveable

and mutableStateOf will keep the variable

value so it can be used whenever the UI is

recomposed (initial value of x is "abc")

Note: rememberSaveable saves data

longer than remember. Check next slide for

more information.

remember vs rememberSaveable

remember vs rememberSaveable

 remember – Data is retained through recompositions.
Data is NOT retained through a configuration change (the
containing activity is destroyed during a configuration
change).

 rememberSaveable – Data is retained through
recompositions and data is retained through a
configuration change.

 rememberSaveable retains data in more circumstances
than remember.

© 2024 Arthur Hoskey. All
rights reserved.

TextField

TextField

 A composable function

 Allows user to input text.

 Must be called from a composable function or from inside a
setContent block.

 Make sure to use at least version 1.1.2 of the material3
dependency in the Gradle (app) file (make sure to Sync the
Gradle file):

implementation("androidx.compose.material3:material3:1.1.2")

© 2024 Arthur Hoskey. All
rights reserved.

Add the

dependency

version number

TextField

TextField

 When creating a TextField you must also declare a variable to hold the
data type in the TextField.

var text by rememberSaveable { mutableStateOf("") }

TextField(

 value = text,

 onValueChange = { text = it },

 label = { Text("Enter Message") }

)

© 2024 Arthur Hoskey. All
rights reserved.

The text variable stores the string value

being displayed in the TextField

onValueChange. This event handler runs if

the value in the TextField changes. This code

will update the text variable value so that it

matches the value in the TextField.

Note: The it keyword is described on an

upcoming slide.

"Enter Message" is the label for

the TextField

When the user starts typing in the

TextField the label will shrink. Any data

typed in the TextField goes in the text

variable.

Create TextField in Function

Create TextField in Function

 Define a function that creates both the TextField and its associated
variable.

@Composable

fun SimpleFilledTextFieldSample(labelToUse: String) {

 var text by rememberSaveable { mutableStateOf("") }

 TextField(

 value = text,

 onValueChange = { text = it },

 label = { Text(labelToUse) }

)

}

@Composable

fun MainScreen(modifier: Modifier) {

 Column(modifier) {

 SimpleFilledTextFieldSample("First Name")

 SimpleFilledTextFieldSample("Last Name")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Call the SimpleTextField function and pass

in the label to use for it

Each TextField created by this function will have

its own text variable instance (typing in one

TextField will not affect any of the others

generated by this function).

label is passed as a

parameter

it Keyword

it Keyword

 Use with a one argument lambda.

 You can omit the parameter definition if there is only one parameter and
just use "it".

 In the code below onValueChange takes one parameter which will contain
the new value typed in the TextField).

 This parameter is omitted in favor of using "it" instead. So "it" will contain
the new value typed in the TextField.

@Composable

fun SimpleFilledTextFieldSample() {

 var text by rememberSaveable { mutableStateOf("") }

 TextField(

 value = text,

 onValueChange = { text = it },

 label = { Text("Label") }

)

}

© 2024 Arthur Hoskey. All
rights reserved.

Use "it" keyword instead of formally defining

the one and only parameter to onValueChange.

The following code is equivalent:

onValueChange = { value → text = value}

This version of the lambda names the one and

only parameter "value".

Button

Button

 A composable function.

 Allows the user to trigger an action.

 For example:

Button(

 onClick = {

 // Do something like set a value or show a toast here…

 }

)

{

 Text(text="Press Me")

}

© 2024 Arthur Hoskey. All
rights reserved.

Text that is displayed on

the button itself

onClick is the event handler for the Button. When

the Button is pressed it will run the code in the

function associated with onClick.

Column

Column

 A composable function.

 Arrange multiple UI items one after another vertically.

 For example:

Column(modifier) {

 Text(text = "Hello")

 Text(text = "Android")

}

© 2024 Arthur Hoskey. All
rights reserved.

Column arranges

items vertically

Modifier

Modifier

 Modifiers allow you to decorate or augment a composable.

 Create a Modifier instance and pass it to a composable.

 Here are some things that modifier can be used on:
◦ Set color

◦ Set size

◦ Set padding

◦ Set event handlers

 Here is an example usage:

Text("Hello", modifier = Modifier.background(Color.Green))

 Link:
https://developer.android.com/develop/ui/compose/modifiers

© 2024 Arthur Hoskey. All
rights reserved.

Create a new instance

of the Modifier class Call background function on the Modifier

instance and pass in the color green

https://developer.android.com/develop/ui/compose/modifiers

Chain Function Calls on Modifier
Instance

Chain Function Calls on Modifier Instance

 Modifier member functions return an instance of Modifer.

 A consequence of this is we can now chain together multiple
function calls (as many as we want).

 For example:

Text("Hello",

 modifier = Modifier

 .background(Color.Green)

 .fillMaxWidth()

)

© 2024 Arthur Hoskey. All
rights reserved.

This will set the background to

green and make it fill the width

of the screen (to the limit of

the parent container)

Use Existing Modifier Instance

Use Existing Modifier Instance

 You use an existing Modifier instance and configure it more.

 If it is passed as a parameter, then it may have some settings that need to be
retained.

 For example:

@Composable

fun MainScreen(modifier: Modifier) {

 Column(

 modifier

 .background(Color.Red)

 .fillMaxWidth()

) {

 Text("Hello")

 Text("Android")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

This uses modifier (lowercase m). It is using the

parameter (not a new instance). The background

and fillMaxWdith are being added to it.

A scenario where this is useful is when

MainScreen is called from inside a Scaffold with

enableEdgeToEdge turned on. The Modifier

instance passed into MainScreen should have

the padding set on it so that the top of screen

content does not overlap with it. Column will

then use that padding as well as the background

and fillMaxWidth settings (see pics below).

Using modifier (lowercase) Using Modifier (uppercase) so no padding

Surface

Surface
 Material surface is the central metaphor in material design.

 Each surface exists at a given elevation, which influences how that piece of surface
visually relates to other surfaces and how that surface casts shadows.

© 2024 Arthur Hoskey. All
rights reserved.

Surface (

 modifier = Modifier.fillMaxWidth().padding(40.dp),

) {

 Column {

 Text("Hello")

 Text("Android")

 }

}

This surface uses shape,

shadowElevation and is

clickable

Surface (

 modifier = Modifier.fillMaxWidth().padding(40.dp),

 shape = RoundedCornerShape(10.dp),

 shadowElevation = 10.dp,

 onClick = {

 Toast.makeText(context, "Surface was clicked",

 Toast.LENGTH_SHORT).show()

 }

) {

 Column {

 Text("Hello")

 Text("Android")

 }

}

Definition taken from:

https://developer.android.com/reference/kotlin/androidx/compose/

material/package-summary

Composable Function
Relationships

Composable Function Relationships
 The prebuilt composable functions call other composable functions in their

implementation.

 The arrow means one composable calls another. For example, the Button function
calls the Surface function.

© 2024 Arthur Hoskey. All
rights reserved.

Card

Surface

Box

Layout

Text

BasicText

TextField

BasicTextField

CoreTextField

SimpleLayout

Button

Note: Layout calls other

functions that are not shown

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: Composable Function
	Slide 4: Create Composables in a Loop
	Slide 5: Calling Composable Functions
	Slide 6: setContent Block
	Slide 7: Call Composable Function from setContent (Scaffold and enableEdgeToEdge)
	Slide 8: Call Composable Function from setContent (No Scaffold or enableEdgeToEdge)
	Slide 9: Text
	Slide 10: Text That Uses a Variable Source
	Slide 11: remember vs rememberSaveable
	Slide 12: TextField
	Slide 13: TextField
	Slide 14: Create TextField in Function
	Slide 15: it Keyword
	Slide 16: Button
	Slide 17: Column
	Slide 18: Modifier
	Slide 19: Chain Function Calls on Modifier Instance
	Slide 20: Use Existing Modifier Instance
	Slide 21: Surface
	Slide 22: Composable Function Relationships
	Slide 23: End of Slides

